Блез Паскаль: биография, мысли, изобретения, открытия, арифмометр

Паскаль носил в душе водоворот без дна.
Ш. Бодлер. "Пропасть".

Перевод К. Бальмонта.

Блез Паскаль

Блез Паскаль родился 19 июня 1623 года. Он - один из самых знаменитых людей в истории человечества. Паскаль входит в число великих французов, портреты которых воспроизведены на ассигнациях (наряду с Корнелем, Расином, Вольтером и Пастером). Очень внушительно выглядит собрание высказываний великих людей о Паскале, и соблазнительно хотя бы перечислить некоторые из них, но нас останавливает предостережение самого Паскаля: "...когда мы цитируем авторов, мы цитируем их доказательства, а не их имена...". Мы лишь заметим, что разные люди в разные времена воспринимали Паскаля - мыслителя и писателя - как своего современника.

Правильно оценить Паскаля - математика и физика - можно лишь в исторической перспективе. Сегодня об открытиях Паскаля рассказывается на страницах школьных учебников. Для того, чтобы понять величие этих открытий, нужно научиться удивляться тому, чему удивлялись его современники. Заодно мы можем заметить, сколь различаются скорости "старения" естественно-научных и гуманитарных открытий.

Упомянем еще об одной грани наследия Паскаля - его практических достижениях. Некоторые из них удостоились высшего отличия - сегодня мало кто знает имя их автора. Многим ли известно, что самую обыкновенную тачку изобрел Паскаль (а не безымянный умелец в Древнем Египте или Китае)? А еще Паскалю принадлежит идея омнибусов - общедоступных карет ("за 5 су") с фиксированными маршрутами - первого вида регулярного городского транспорта.

1. Палочки и монетки

Когда мы учимся рисовать графики, то в калейдоскопе безымянных кривых иногда появляются кривые, имеющие какое-то название или носящие чье-то имя: спираль Архимеда, трезубец Ньютона, конхоида Никомеда, лист Декарта, локон Марии Аньезе, улитка Паскаля (рис. 1)... Редко, кто усомнится в том, что это тот же Паскаль, которому принадлежит "закон Паскаля". Однако в названии замечательной кривой 4-го порядка увековечено имя Этьена Паскаля (1588-1651) - отца Блеза Паскаля. Э. Паскаль, как было принято в роде Паскалей, служил в парламенте (суде) города Клермон-Феррана. Совмещение юридической деятельности с занятиями науками, далекими от юриспруденции, было делом нередким.

Улитка Паскаля

Примерно в это же время посвящал математике свой досуг советник тулузского парламента Пьер Ферма (1601-1665). Хотя собственные достижения Э. Паскаля были скромными, его основательные познания позволяли ему поддерживать профессиональные контакты с большинством французских математиков.

С великим Ферма он обменивался трудными задачами на построение треугольников; в споре Ферма с Рене Декартом (1596-1650) о задачах на максимум и минимум Паскаль выступал на стороне Ферма. Б. Паскаль унаследовал добрые отношения отца со многими математиками, но вместе с тем к нему перешли и напряженные отношения с Декартом.

Рано овдовев, Этьен Паскаль посвящает себя главным образом воспитанию своих детей (кроме сына, у него были две дочери - Жильберта и Жаклина). У маленького Блеза очень рано обнаруживается поразительное дарование, но, как это часто бывает, в сочетании с плохим здоровьем. (Всю жизнь с Б. Паскалем случались странные происшествия; в раннем детстве он едва не погиб от непонятной болезни, сопровождавшейся припадками, которую семейная легенда связывает с колдуньей, сглазившей мальчика.)

Этьен Паскаль тщательно продумывает систему воспитания детей. На первых порах он решительно исключает математику из числа предметов, которым обучает Блеза: отец боялся, что увлеченность математикой помешает гармоничному развитию, а неизбежные напряженные размышления повредят слабому здоровью сына. Однако 12-летний мальчик, узнав о существовании таинственной геометрии, которой занимался отец, уговорил его рассказать немного о запретной науке. Полученных сведений оказалось достаточно для того, чтобы начать увлекательную "игру в геометрию", доказывать теорему за теоремой. В этой игре участвовали "монетки" - круги, "треуголки" - треугольники, "столы" - прямоугольники, "палочки" - отрезки. Мальчик был застигнут отцом в тот момент когда он обнаружил, что углы треуголки составляют столько же, сколько два угла стола. Э. Паскаль без труда узнал знаменитое 32-е предложение первой книги Евклида - теорему о сумме углов треугольника. Результатом были слезы на глазах отца и доступ к шкафам с математическими книгами.

История о том, как Паскаль сам построил евклидову геометрию, известна по восторженному рассказу его сестры Жильберты. Этот рассказ породил очень распространенное заблуждение, заключающееся в том, что раз Паскаль открыл 32-е предложение "Начал" Евклида, то он открыл перед этим все предыдущие теоремы и все аксиомы. Нередко это воспринималось как аргумент в пользу того, что аксиоматика Евклида - единственно возможная. На самом же деле, вероятно, геометрия у Паскаля находилась на "доевклидовском" уровне, когда интуитивно неочевидные утверждения доказываются путем сведения к очевидным, причем набор последних никак не фиксируется и не ограничивается. Лишь на следующем, существенно более высоком уровне делается великое открытие, что можно ограничиться конечным сравнительно небольшим набором очевидных утверждений - аксиом, предположив истинность которых можно остальные геометрические утверждения доказать. При этом, наряду с неочевидными утверждениями (такими, как, например, теоремы о замечательных точках треугольника), приходится доказывать "очевидные" теоремы, в справедливость которых легко поверить (например, простейшие признаки равенства треугольников). Собственно 32-е предложение - первое неочевидное в этом смысле предложение "Начал". Нет сомнения, что у юного Паскаля не было ни времени для огромной работы по отбору аксиом, ни, скорее всего, потребности в ней.

Это интересно сопоставить со свидетельством А. Эйнштейна, который в те же 12 лет в значительной степени самостоятельно постигал геометрию (в частности, нашел доказательство теоремы Пифагора, о которой узнал от дяди): "Вообще мне было достаточно, если я мог в своих доказательствах опираться на такие положения, справедливость которых представлялась мне бесспорной".

Примерно в 10 лет Б. Паскаль сделал первую физическую работу: заинтересовавшись причиной звучания фаянсовой тарелки и проведя поразительно хорошо организованную серию экспериментов при помощи подручных средств, он объяснил заинтересовавшее его явление колебанием частичек воздуха.

2. "Мистический шестивершинник" или "великая паскалева теорема"

В 13 лет Б. Паскаль уже имеет доступ в математический кружок Мерсенна, в который входило большинство парижских математиков, в том числе Э. Паскаль (Паскали жили в Париже с 1631 года).

Францисканский монах Марен Мерсенн (1588-1648) сыграл в истории науки большую и своеобразную роль ученого-организатора. (При оценке деятельности Мерсенна надо иметь в виду, что первый научный журнал - "Журнал ученых" - был основан в 1665 году.) Его основная заслуга состояла в том, что он вел обширную переписку с большинством крупных ученых мира (у него было несколько сот корреспондентов). Мерсенн умело концентрировал информацию и сообщал ее заинтересованным ученым. Эта деятельность требовала своеобразного дарования: умения быстро понимать новое, хорошо ставить задачи. Обладающий высокими н